____ **C.U.SHAH UNIVERSITY Summer Examination-2017**

Subject Name: Number Theory

Subject Code:5SC03	SNTE1	Branch: M.Sc.(Mathematics)
Semester: 3	Date:29/03/2017	Time:10:30 To 01:30	Marks:70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION - I

Q-1		Attempt the Following questions	(07)
	a.	Prove that if p is prime and p/ab , then p/a or p/b .	(02)
	b.	Define: Euler function. Find $\phi(360)$.	(02)
	c.	Find highest power of 2 that divides 50!.	(02)
	d.	Find gcd(525, 231).	(01)

Q-2		Attempt all questions	
	a.	State Chinese remainder theorem. Solve the system of three congruences	(05)
		$x \equiv 1 \pmod{3}, x \equiv 2 \pmod{5}, x \equiv 3 \pmod{7}$	

- **b.** In usual notations prove that, a, b = ab. (05)
- **c.** If p_n is the n^{th} prime numbers, then prove that $p_n \le 2^{2^{n-1}}$, $\forall n$. (04)

OR

Q-2		Attempt all questions	(14)
	a.	Prove that if $2^k - 1$ is prime $(k > 1)$, then $n = 2^{k-1}(2^k - 1)$ is perfect and	(05)
		every even perfect number is of this form.	
	b.	Let $N = a_0 + a_1 10 + a_2 10^2 + \dots + a_m 10^m$ be the decimal expansion of the	(05)
		positive integer N, $0 \le a_k < 10$, and let $S = a_0 + a_1 + \dots + a_m$. Then prove that	
		9 N if and only if $9 S$. Is 1571724 divisible by 9? Justify.	
	c.	Define: Mobious function. Show that Mobious function is multiplicative.	(04)
Q-3		Attempt all questions	(14)
	a.	Prove that given integers a and b, with $b > 0$, there exist unique integers q and r	(05)
		satisfying $a = qb + r$, $0 \le r < b$.	
	b.	Prove that if $k > 0$, then $gcd(ka, kb) = k gcd(a, b)$.	(03)
		Page 1 3	

c.	Prove that if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + c \pmod{n}$						
	and $ac \equiv bc \pmod{n}$.						

d. Prove that if $n \ge 1$ and gcd(a, n) = 1, then $a^{\phi(n)} \equiv 1 \pmod{n}$. (03)

OR

Q-3		Attempt all questions	(14)
	a.	Prove that every positive integer greater than one can be express uniquely as a	(05)
		product of prime, up to the order of the factor.	
	b.		(03)
	c.	Show that $\left[\frac{[x]}{n}\right] = \left[\frac{x}{n}\right]$ if <i>n</i> is a positive integer.	(03)
	d.	Prove that if p is prime, then $(p-1)! \equiv -1 \pmod{p}$.	(03)

SECTION – II

Q-4		Attempt the Following questions	(07)
	a.	Express the rational number $\frac{19}{51}$ in finite simple continue fraction.	(02)
	b.	Define: Primitive root. Find two primitive roots of 10.	(02)
	c.	Determine the infinite continued fraction representation of $\sqrt{7}$.	(02)
	d.	Define: Algebraic number.	(01)
Q-5		Attempt all questions	(14)
	a.		(05)
	b.	Prove that the value of any infinite continued fraction is an irrational number.	(05)
	c.	Find first three positive solution of the equation $x^2 - 7y^2 = 1$.	(04)

OR

Q-5		Attempt all questions If $\frac{p_k}{q_k}$ are the convergents of the continued fraction expansion of \sqrt{d} then, prove that $p_k^2 - dq_k^2 = (-1)^{k+1} t_{k+1}$, where $t_{k+1} > 0, k = 0, 1, 2, 3,$	(14) (05)
	D.	Prove that the product of two primitive polynomial is primitive.	(05)
	c.	Determine the unique irrational number represented by the infinite continued fraction $x = [3; 6, \overline{1,4}]$.	(04)
Q-6		Attempt all questions	(14)
	a.	State and prove the Fermat's Last theorem.	(06)
	b.	Prove that the k^{th} convergent of the simple continued fraction $[a_0; a_1, a_2,, a_n]$	(05)
		has the value $c_k = \frac{p_k}{q_k}$, $0 \le k \le n$.	
	c.	Let θ denote any irrational number. If there is a rational number a/b with $b \ge 1$	(03)

c. Let θ denote any irrational number. If there is a rational number a/b with $b \ge 1$ (03) such that $\left|\theta - \frac{a}{b}\right| < \frac{1}{2b^2}$, then prove that a/b equals one of the convergents of the simple continued fraction expansion of θ .

Page 2 || 3

OR

Q-6 **Attempt all Questions**

- (14) **a.** If p is prime and $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, a_n is incongruent (06) to 0 modulo p, is a polynomial of degree $n \ge 1$ with integral coefficients, then prove that $f(x) \equiv 0 \pmod{p}$ has at most *n* incongruent solutions modulo *p*.
- **b.** Prove that all the solutions of $x^2 + y^2 = z^2$ with x, y, z > 0; satisfying the (05) conditions (x, y, z) = 1, 2|x are given by the formula $x = 2st, y = s^2 - t^2$, $z = s^2 + t^2$, where s > t > 0, (s, t) = 1 and one of s, t is even and the other is odd.
- **c.** Compute the convergents of the simple continued fraction [1; 2,3,3,2,1]. (03)

Page 3 || 3

